Precalculus

6-05 Dot Products

Dot Product

- $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle, \vec{v}=\left\langle v_{1}, v_{2}\right\rangle$
- $\vec{u} \bullet \vec{v}=u_{1} v_{1}+u_{2} v_{2}$

Find $\langle 5,-4\rangle \cdot\langle 9,-2\rangle$

Angle between vectors

- $\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$

Find the angle between $\langle 5,-4\rangle$ and $\langle 9,-2\rangle$

Parallel and Perpendicular Vectors

- If $\vec{u} \bullet \vec{v}=0$, then \vec{u} and \vec{v} are \qquad (perpendicular)
- If $\vec{u}=k \vec{v}$, then \vec{u} and \vec{v} are (or antiparallel)
Are $\langle 1,-4\rangle$ and $\langle 6,2\rangle$ orthogonal, parallel, or neither?
- Let \vec{u} and \vec{v} be vectors such that $\vec{u}=\overrightarrow{w_{1}}+\overrightarrow{w_{2}}$ where $\overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$ are orthogonal and $\overrightarrow{w_{1}}$ is parallel to $\vec{v} \cdot \overrightarrow{w_{1}}$ and $\overrightarrow{w_{2}}$ are components of \vec{u}.
- $\overrightarrow{w_{1}}$ is the projection of \vec{u} onto $\vec{v}: \overrightarrow{w_{1}}=\operatorname{proj}_{\vec{v}} \vec{u}$
- $\overrightarrow{w_{1}}=\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v}$
- $\overrightarrow{w_{2}}=\vec{u}-\overrightarrow{w_{1}}$
- Work $=\vec{F} \cdot \vec{d}$

Find the projection of $\vec{u}=\langle 3,4\rangle$ onto $\vec{v}=\langle 8,2\rangle$. Then write \vec{u} as the sum of 2 orthogonal vectors.

