Precalculus

6-05 Dot Products

Are $\langle 1, -4 \rangle$ and $\langle 6, 2 \rangle$ orthogonal, parallel, or neither?

Precalculus 6-05 Find Vector Components

- Let \vec{u} and \vec{v} be vectors such that $\vec{u} = \vec{w_1} + \vec{w_2}$ where $\vec{w_1}$ and $\vec{w_2}$ are orthogonal and $\vec{w_1}$ is parallel to \vec{v} . $\vec{w_1}$ and $\vec{w_2}$ are components of \vec{u} .
- $\overrightarrow{w_1}$ is the projection of \overrightarrow{u} onto \overrightarrow{v} : $\overrightarrow{w_1} = proj_{\overrightarrow{v}} \overrightarrow{u}$

•
$$\overrightarrow{w_1} = proj_{\overrightarrow{v}} \overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{v}\|^2} \overrightarrow{v}$$

- $\overrightarrow{w_2} = \overrightarrow{u} \overrightarrow{w_1}$
- $Work = \vec{F} \cdot \vec{d}$

Find the projection of $\vec{u} = \langle 3, 4 \rangle$ onto $\vec{v} = \langle 8, 2 \rangle$. Then write \vec{u} as the sum of 2 orthogonal vectors.